The product of 2 numbers is 352 and their sum is 38
Assume that the 2 numbers are x and y, then
![\begin{gathered} x+y=38\rightarrow(1) \\ xy=352\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ofy0dr6z89zg7xor4isbg2i589p05y0u1y.png)
Use equation (1) to find y in terms of x
Subtract x from both sides
![\begin{gathered} x-x+y=38-x \\ y=38-x\rightarrow(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lzajqmi9gxfjsjhb4md6caj3vsxfjamioe.png)
Substitute y in equation (2) by equation (3)
![x(38-x)=352](https://img.qammunity.org/2023/formulas/mathematics/college/pjqf14pdwrrx21i7bd6ja81799g8b3h1me.png)
Simplify the left side and subtract 352 from both sides
![\begin{gathered} (x)(38)-(x)(x)=352 \\ 38x-x^2=352 \\ 38x-x^2-352=352-352 \\ -x^2+38x-352=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/muz7vc1aeleqx1xsu7aticvayw3bvwu87k.png)
Multiply each term by -1
![x^2-38x+352=0](https://img.qammunity.org/2023/formulas/mathematics/college/e24khp71caorpzkv2as8zenjzo7r4gfmtg.png)
Factor the left side into 2 factors
![\begin{gathered} x^2=(x)(x) \\ 352=(-22)(-16) \\ (-22)(x)+(-16)(x)=-38x \\ (x-22),(x-16) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lrfnfjt5lo4ypjpabu8fz5b9csz7oehdjr.png)
The factors are (x - 22) and (x - 16)
![\begin{gathered} x^2-38x+352=(x-22)(x-16) \\ (x-22)(x-16)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fl60vh4hf7zh4kich45efrow3rhk8z5ie3.png)
Equate each factor by 0 to find x
![x-22=0](https://img.qammunity.org/2023/formulas/mathematics/college/86p02lwjabl8ty8621uu6eq6o6ilkyli71.png)
Add 22 to each side
![\begin{gathered} x-22+22=0+22 \\ x=22 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o3wylfwxaerw69ff0m6d9mcjju66sbeha8.png)
OR
![x-16=0](https://img.qammunity.org/2023/formulas/mathematics/college/k2imanvjskezryh1mat2ve4h3a3tzz5ph1.png)
Add