We need to find the product of the expressions:
![(1)/(5)x-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/damh3mqc9945jd98czj8jf0qq2mb7alsvr.png)
and
![5x-(5)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/b99ge7ez4mmgc7gncowcq0jzuk77o8yl8n.png)
So, we can write:
![((1)/(5)x-(1)/(2))\cdot(5x-(5)/(6))](https://img.qammunity.org/2023/formulas/mathematics/college/gagenggknbsr1in296ajqejlfjupkkf3oo.png)
Remember that when we have a product of two expressions that have two terms as:
![(a+b)\cdot(c+d)](https://img.qammunity.org/2023/formulas/mathematics/college/apontt7iwc8ae2jr1yu2xe92v8mvb3hh0t.png)
We can distribute it multiplicating as:
Then distributing our expressions we have:
![x^2-(x)/(6)-(5)/(2)x+(5)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/fli3wbgt47uqgd34wo1t5338v5go5nqie9.png)
We simplify as we can:
![x^2-(8)/(3)x+(5)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/ornrspmrghablh9xijqqapwgs7fe5pbf79.png)
And it is the simplest form because it is not a perfect trinomial, we can conclude the correct answer is:
![x^2-(8)/(3)x+(5)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/ornrspmrghablh9xijqqapwgs7fe5pbf79.png)