Step-by-step explanation
The triangle below is a right-angle triangle, where the adjacent side is 150ft and the opposite side is 53ft.
We can get the opposite side using the formula below;
![(\text{Hypotenuse)}^2=(Opposite\text{)}^2+(\text{Adjacent)}^2](https://img.qammunity.org/2023/formulas/mathematics/college/i20xs2j2t4e6lowiib8f3a91ckhadzi7an.png)
We will then have;
![\begin{gathered} (\text{Hypotenuse)}^2=150^2+53^2 \\ \text{Hypotenuse}=\sqrt[]{25309} \\ \text{Hypotenuse}=159.088 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jpvrhwqlbzj9mksdrltxrrtx5o5i85slja.png)
Using the trigonometric functions we will have the following;
![\begin{gathered} \text{Sinx}=\frac{\text{opp}}{Hyp}=(53)/(159.088)=0.3331 \\ \text{Cosx}=\frac{\text{Adj}}{Hyp}=(150)/(159.088)=0.9429 \\ \text{Tanx}=\frac{\text{opp}}{Adj}=(53)/(150)=0.3533 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ongnvl7p03h8230b7uhlmd5d26bf6nfrz9.png)
Answer:
![\begin{gathered} \text{Sinx}=0.3331 \\ \text{Cosx}=0.9429 \\ \text{Tanx}=0.3533 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hy1pg8inlmg86lpzgib9v2hoqb35fnrd5o.png)