The sequence given is a geometric sequence.
A geometric sequence has the explicit formula in the form:
![\begin{gathered} u(n)=ar^(n-1) \\ where \\ a=first\text{ }term \\ r=common\text{ }ratio \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mh2ykjuyki67kxhl68wqla8zu693wmq4ho.png)
and the recursive formula in the form:
![u(n+1)=u(n)* r](https://img.qammunity.org/2023/formulas/mathematics/college/77ad7rd14md3r1x33jyl9hhrxxv56thvhp.png)
The question provides the following parameters:
![a=u(1)=16](https://img.qammunity.org/2023/formulas/mathematics/college/zj45ymv6obelfik4e736uybfx5747jrji7.png)
The recursive formula is given to be:
![u(n+1)=9u(n)](https://img.qammunity.org/2023/formulas/mathematics/college/7s3izukjdlw0xdpefm5z0dwehu36n75cpt.png)
Therefore, the common ratio is:
![r=9](https://img.qammunity.org/2023/formulas/mathematics/college/wubjkfc1c5duju9d0re87o9yk31czyyrua.png)
Hence, the explicit formula is given to be:
![u(n)=16(9)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/h1z2zrycsm3ogyohiwkpl899cbzxkh1mym.png)
OPTION B is correct.