30.9k views
2 votes
Solve the system using elimination- 8x + 6y = 24-16x - 7y = -28Show your work here:Solution

User Myisha
by
8.5k points

1 Answer

6 votes

Solution:

Given:


\begin{gathered} -8x+6y=24 \\ -16x-7y=-28 \end{gathered}

Using the elimination method,


\begin{gathered} \text{Multiplying equation (1) by 2;} \\ -8x+6y=24\ldots\ldots\ldots\ldots\text{......}(1)*2 \\ -16x+12y=48\ldots\ldots\ldots\ldots\ldots\ldots\text{.}\mathrm{}(1)\text{new equation (1)} \\ -16x-7y=-28\ldots\ldots..\ldots\ldots\ldots..\mathrm{}(2) \\ \text{Subtracting equation (2) from (1);} \\ (1)-(2); \\ -16x-(-16x)+12y-(-7y)=48-(-28) \\ 12y+7y=48+28 \\ 19y=76 \\ y=(76)/(19) \\ y=4 \end{gathered}

Substituting y into equation (1);


\begin{gathered} -8x+6y=24 \\ -8x+6(4)=24 \\ -8x+24=24 \\ -8x=24-24 \\ -8x=0 \\ x=0 \end{gathered}

Therefore, the solution is;


(x,y)=(0,4)

The solution is also shown graphically below;

Solve the system using elimination- 8x + 6y = 24-16x - 7y = -28Show your work here-example-1
User Pistachionut
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories