133k views
5 votes
A cellular phone company monitors monthly phone usage. The following data represent the monthly phone use of one particular customer for the past 20 months. Use the given data to answerParts a and b321 397 559 454 475324 482 558 369 513385 360 459 403 498477 361 366 372 320Determine the standard deviation and interquartile range of data.

1 Answer

3 votes

SOLUTION

Given the question in the image, the following are the solution steps to answer the question.

STEP 1: Write the given set of values


321,397,559,454,475,324,482,558,369,513,385,360,459,403,498,477,361,366,372,320

STEP 2: Write the formula for calculating the Standard deviation of a set of numbers


\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ where\text{ }x_i\text{ are data points,} \\ \bar{x}\text{ is the mean} \\ \text{n is the number of values in the data set} \end{gathered}

STEP 3: Calculate the mean


\begin{gathered} \bar{x}=\frac{\sum ^{}_{}x_i}{n} \\ \bar{x}=\frac{\sum ^{}_{}(321,397,559,454,475,324,482,558,369,513,385,360,459,403,498,477,361,366,372,320)}{20} \\ \bar{x}=(8453)/(20)=422.65 \end{gathered}

STEP 4: Calculate the Standard deviation


\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ \sum ^{}_{}(x_i-\bar{x})^2\Rightarrow\text{Sum of squares of differences} \\ \Rightarrow10332.7225+657.9225+18591.3225+982.8225+2740.52251+9731.8225+3522.4225+18319.6225+2878.3225 \\ +8163.1225+1417.5225+3925.0225+1321.3225+386.1225+5677.6225+2953.9225+3800.7225 \\ +3209.2225+2565.4225+10537.0225 \\ \text{Sum}\Rightarrow108974.0275 \\ \\ S\tan dard\text{ deviation}=\sqrt[]{(111714.55)/(20-1)}=\sqrt[]{(111714.55)/(19)} \\ \Rightarrow\sqrt[]{5879.713158}=76.67928767 \\ \\ S\tan dard\text{ deviation}\approx76.68 \end{gathered}

Hence, the standard deviation of the given set of numbers is approximately 76.68 to 2 decimal places.

STEP 5: Calculate the First and third quartile


\begin{gathered} \text{IQR}=Q_3-Q_1 \\ \\ To\text{ get }Q_1 \\ We\text{ first arrange the data in ascending order} \\ \mathrm{Arrange\: the\: terms\: in\: ascending\: order} \\ 320,\: 321,\: 324,\: 360,\: 361,\: 366,\: 369,\: 372,\: 385,\: 397,\: 403,\: 454,\: 459,\: 475,\: 477,\: 482,\: 498,\: 513,\: 558,\: 559 \\ Q_1=((n+1)/(4))th \\ Q_1=((20+1)/(4))th=(21)/(4)th=5.25th\Rightarrow(361+366)/(2)=(727)/(2)=363.5 \\ \\ To\text{ get }Q_3 \\ Q_3=((3(n+1))/(4))th=(3*21)/(4)=(63)/(4)=15.75th\Rightarrow(477+482)/(2)=(959)/(2)=479.5 \end{gathered}

STEP 6: Find the Interquartile Range


\begin{gathered} IQR=Q_3-Q_1 \\ \text{IQR}=479.5-363.5 \\ \text{IQR}=116 \end{gathered}

Hence, the interquartile range of the data is 116

User Arzybek
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories