Answer:
The 20th term is;
![a_(20)=-131](https://img.qammunity.org/2023/formulas/mathematics/college/x9mwmwe98x2s4fhn2g96suswzz6l6o31e7.png)
Step-by-step explanation:
Given the arithemetic sequence;
![2,-5,-12,-19,\ldots](https://img.qammunity.org/2023/formulas/mathematics/college/x8m6rk1glffujhc0o1px1uaydfka5bml9i.png)
The first term is 2;
![a=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/22mxghnc24vy9hp2u6w3waziuas5s6w89q.png)
The common difference d is;
![\begin{gathered} d=-5-2 \\ d=-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/25vb83sa4gafld4mouzc5h5rt6sra7c7nd.png)
The nth term of an arithemetic sequence can be calculated using the formula;
![a_n=a+(n-1)d](https://img.qammunity.org/2023/formulas/mathematics/high-school/t99kk5roieipg56xa37yseewl9ybc4zh6i.png)
substituting for the 20th term, n=20;
![\begin{gathered} a_(20)=2+(20-1)(-7) \\ a_(20)=2+(19)(-7) \\ a_(20)=2-133 \\ a_(20)=-131 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yoro6ohf6z3whwn4pjhudluzwipas0rdyp.png)
Therefore, the 20th term is;
![a_(20)=-131](https://img.qammunity.org/2023/formulas/mathematics/college/x9mwmwe98x2s4fhn2g96suswzz6l6o31e7.png)