To find the limit given we need to divide the numerator and denominator by the highest power of x in the denominator. We notice that the highest power is x squared, then we divide by this power:
![\begin{gathered} \lim _(x\rightarrow\infty)(6x^3-3x+1)/(-2x^2+4x+7)=\lim _(x\rightarrow\infty)((6x^3-3x+1)/(x^(^2)))/((-2x^2+4x+7)/(x^3)) \\ \lim _(x\rightarrow\infty)\frac{6x-\frac{3}{x^{}}+(1)/(x^(^2))}{-2+\frac{4}{x^{}}+(7)/(x^(^2))} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ekpdwye19wbqrovb0rxq2ihzton1js32mz.png)
Now, since:
![6x-(3)/(x)+(1)/(x^2)\rightarrow\infty](https://img.qammunity.org/2023/formulas/mathematics/college/5do9f5qqsjf6nnirbxvxslt873e28z29gv.png)
and
![-2+(4)/(x)-(7)/(x^2)\rightarrow-2](https://img.qammunity.org/2023/formulas/mathematics/college/b2iig66s80yqes0liee5maab7t3ysxdkev.png)
we conclude that:
![\lim _(x\rightarrow\infty)(6x^3-3x+1)/(-2x^2+4x+7)=-\infty](https://img.qammunity.org/2023/formulas/mathematics/college/gyrpx20n0ybsyll3f1njo0w96p1v21726z.png)
(Remember that this does not mean that the limit exist, this just means that the values of the function become small as x becomes large. This is a short way to express that)
Now, remember that an horizontal asymptote is defined as:
The line y=L is called a horizontal asymptote of the curve y=f(x) if either
![\begin{gathered} \lim _(x\rightarrow\infty)f(x)=L\text{ } \\ or \\ \lim _(x\rightarrow-\infty)f(x)=L\text{ } \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hnlc1apxpszrlw4cqaywvkp9yvzponpq2s.png)
Since this is not the case we conclude that his is not a horizontal asymptote.
Now a vertical asymptote is defined as:
The vertical line x=a is called a vertical asymptote of the curve y=f(x) if at least one of the following statements is true:
![\begin{gathered} \lim _(x\rightarrow a)f(x)=\infty \\ \lim _(x\rightarrow a^-)f(x)=\infty \\ \lim _(x\rightarrow a^+)f(x)=\infty \\ \lim _(x\rightarrow a)f(x)=-\infty \\ \lim _(x\rightarrow a^-)f(x)=-\infty \\ \lim _(x\rightarrow a^+)f(x)=-\infty \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f54f5f1wctmpty0aopmkmosu58sp07bfoa.png)
Since this is not the case we conclude that his is not a vertical asymptote.