Given the system of equations:
![\begin{cases}x+y=5 \\ 8x+4y=28\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/8ii4hq4cjvsp8e70q3bgun4ihiwz1m0kbh.png)
We will use the elimination method to solve the system of equations
To eliminate (y), multiply the first equation by (-4) which is the opposite of the coefficient of (y) for the second equation
![\begin{gathered} \begin{cases}x+y=4\rightarrow*-4 \\ 8x+4y=28\end{cases} \\ ============ \\ \begin{cases}-4x-4y=-20 \\ 8x+4y=28\end{cases} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ig4w8zwvincv9br6pj1dartcc4kt3ilqw.png)
Add the equations, note (y) will be eliminated
![\begin{gathered} -4x+8x=-20+28 \\ 4x=8 \\ x=(8)/(4)=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jrnvvitussifppk4qc311pnc3b6z8xy6hl.png)
Substitute with (x) into the first equation to find (y)
![\begin{gathered} 2+y=5 \\ y=5-2 \\ y=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zf3wwvpbfd4gyftb14ij0tc4lvs28hrml2.png)
So, the solution to the system is the point (2, 3)
The answer will be option C. (2, 3)