The standard form of a circle is
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/5s77z5lwu6jnvb5vkwanu2jvhq5sh1qkc3.png)
Where
(h, k) is the center
r is the radius
Given,
Center (1, 2) and Radius 5, we can write >>>
![(x-1)^2+(y-2)^2=5^2](https://img.qammunity.org/2023/formulas/mathematics/college/rg808camloa5wxadm8vgzr35swydq2elym.png)
This is the equation of the circle. We plug in each point (x, y) into the circle equation and see which one does not satisfy the equation.
Checking (4, 6)
![\begin{gathered} (4-1)^2+(6-2)^2\stackrel{?}{=}5^2 \\ 9+16\stackrel{?}{=25} \\ 25=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8jvto0ojw4734xsej7ry816d3pti0rm1qg.png)
Checking (-2, -2)
![\begin{gathered} (-2-1)^2+(-2-2)^2\stackrel{?}{=}5^2 \\ 9+16\stackrel{?}{=}25 \\ 25=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xmw8np0a50mzhbw432mu26old7a8wbps3q.png)
Checking (1, 6)
![\begin{gathered} (1-1)^2+(6-2)^2\stackrel{?}{=}5^2 \\ 0+16\stackrel{?}{=}25 \\ 16\\eq25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a7k0ben25ults63hcxu0dlnw8gq405cq5e.png)
So, the point (1, 6) doesn't lie on the circle!