This problem relies on the law of conservation of energy
The equation below is the formula for kinetic energy
![KE=(1)/(2)mv^2](https://img.qammunity.org/2023/formulas/physics/college/y7hdphwtct6114zk5hr2yj1gps0505adtk.png)
And the formula for gravitational potential energy is
![PE=mgh](https://img.qammunity.org/2023/formulas/mathematics/high-school/yyt5fu7qoq5gjksr7r2efrp9v9pmhfsx35.png)
So to find final speed, we will use both of these formulas
![(1)/(2)mv_1^2+mgh_1=(1)/(2)mv_2^2+mgh_2](https://img.qammunity.org/2023/formulas/physics/college/f83hr98ebvrjm78ive2vsyb4dyhn369ydv.png)
![(1)/(2)mv_1^2+mgh_1=(1)/(2)mv_2^2+mgh_2](https://img.qammunity.org/2023/formulas/physics/college/f83hr98ebvrjm78ive2vsyb4dyhn369ydv.png)
This formula gives us the energy before and after the skier moves up the hill.
For variables, we have
v1 = 16 m/s
mass = 60 Kg
h2 = 2.5 m
h1 = 0 m
![\begin{gathered} (1)/(2)(60)(16)^2+(60)g(0)=(1)/(2)(60)(v_2)^2+(60)g(2.5) \\ 256=v_2^2+49 \\ v_2^2=207 \\ v_2=14.38\text{ }(m)/(s) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/8dc8qfwlm9smgeeqvb1plchhustsu2j5jb.png)
Final Velocity is 14.38 m/s