To find the central angle of a polygon we just divide 360° by the number of sides that the polygon has, in this case, we have a pentagon, then the central angle of the polygon is:
![CA=(360)/(5)=72](https://img.qammunity.org/2023/formulas/mathematics/college/7tm6654nrgjh43bv086v3qcrh004rw8wj8.png)
In the figure this angle is represented like this:
If we bisect this angle, which is dividing it by 2, we get the angle θ:
![\theta=(72)/(2)=36](https://img.qammunity.org/2023/formulas/mathematics/college/9nk0ryw94sfff25u7jk2mxlbvv1nzorg33.png)
We know that the cosine of the angle θ is:
![\cos (\theta)=(10)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/w0l1m5dpq5swj98c5gw8aanmtfudlk6y3v.png)
By solving for c from this ratio we get:
![\begin{gathered} \cos (\theta)=(10)/(c) \\ c*\cos (\theta)=(10)/(c)* c \\ c*\cos (\theta)=10*(c)/(c) \\ c*\cos (\theta)=10 \\ (c*\cos (\theta))/(\cos (\theta))=(10)/(\cos (\theta)) \\ c*(\cos (\theta))/(\cos (\theta))=(10)/(\cos (\theta)) \\ c=(10)/(\cos (\theta))=(10)/(\cos (36))\approx12.36\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f6sv2w8kicuowvnzzwvykq7klkmr8ghsh2.png)
Then, the measure of the radius equals 12.36 cm