Let us draw a sketch to understand the question
Since A is an acute angle, then it lies on the 1st quadrant
Since B is a reflex angle, then it lies on the 3rd quadrant
In the first quadrant, all ratios are +ve
In the 3rd quadrant sin and cos - ve but the tan is +ve
We will use the identity
![\sin ^2B+\cos ^2B=1](https://img.qammunity.org/2023/formulas/mathematics/college/jta5rq6frsjj3ss3uynctw43rr0ti6xivh.png)
To find the value of sin B because tan B = sin B/cos B
Since cos B = -4/5, then
![\begin{gathered} \sin ^2B+(-(4)/(5))^2=1 \\ \sin ^2B+(16)/(25)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xfnlkvb5648xayaifpiz97vdvbcfmr7k7t.png)
Subtract 16/25 from both sides
![\begin{gathered} \sin ^2B+(16)/(25)-(16)/(25)=1-(16)/(25) \\ \sin ^2B=(9)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kc8zm6jgu89gtxchsfbpckuqal9fc7bjg3.png)
Take a square root for both sides
![\begin{gathered} \sqrt[]{\sin^2B}=\pm\sqrt[]{(9)/(25)} \\ \sin B=-(3)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a9yodcg8r2fits1exu0zlg184gxa82lha5.png)
We take the negative value because sin in the 3rd quadrant is -ve
Divide sin B by cos B to find tan B
![\begin{gathered} \tan B=(\sin B)/(\cos B) \\ \tan B=(-(3)/(5))/(-(4)/(5)) \\ \tan B=(3)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nt08atumoemyumuwrrgkxt892s53jxr766.png)
a) tan B = 3/4
Since sin(A + b) = sinA cosB + SinB cosA --------(1)
Then we have to find the value of cos A, we will use the identity above
![\begin{gathered} \sin ^2A+\cos ^2A=1 \\ ((12)/(13))^2+\cos ^2A=1 \\ (144)/(169)+\cos ^2A=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sbix3npqzmbk152eqzb9asbfsm0elxykjp.png)
Subtract 144/169 from both sides to find the value of cos^2A
![\begin{gathered} (144)/(169)-(144)/(169)+\cos ^2A=1-(144)/(169) \\ \cos ^2A=(25)/(169) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1nr59enpransepoabdrk3wd21jsvnew4m9.png)
Take a square root for both sides, then
![\begin{gathered} \sqrt[]{\cos^2A}=\pm\sqrt[]{(25)/(169)} \\ \cos A=(5)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yhjcqbug6801hyt0rk4qjsbmlmxcd4w1ds.png)
Substitute the values of sin A, cos A, and sin B, cos B in expression (1) above to find sin (A + B)
![\begin{gathered} \sin (A+B)=\sin A\cos B+\sin B\cos A \\ \sin (A+B)=(12)/(13)*(-(4)/(5))+(-(3)/(5))*((5)/(13)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j9vxjf2p3yc6m44atebo6jgqikaz0ifhnr.png)
Simplify it
![\begin{gathered} \sin (A+B)=(-48)/(65)+((-15)/(65)) \\ \sin (A+B)=-(63)/(65) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/48787lbkcsa8br98buou1r0h2uzd0nxfz4.png)
b) sin(A + b) = -63/65