A logistic growth model for the world population is:
![f(x)=(12.57)/(1+4.11\cdot e^(-0.026x))](https://img.qammunity.org/2023/formulas/mathematics/college/o0pgmuzzguqx9ryklxu1mx01et4szfj57d.png)
Where x is the number of years since 1958 and f(x) is expressed in billions
It's required to find the year for which the world population will be f(x) = 9 billion.
Then we set up the equation:
![9=(12.57)/(1+4.11\cdot e^(-0.026x))](https://img.qammunity.org/2023/formulas/mathematics/college/4oo9bei3ssbl8eo0d514uekbmx93i1m8p5.png)
Cross-multiplying:
![9(1+4.11\cdot e^(-0.026x))=12.57](https://img.qammunity.org/2023/formulas/mathematics/college/quqtfisp2bn7dcmct051qbvy44roxo6cg5.png)
Dividing by 9:
![1+4.11\cdot e^(-0.026x)=1.3967](https://img.qammunity.org/2023/formulas/mathematics/college/ovgi6xip4pjo5iygrnqfr5qi7tdfaxg2l1.png)
Subtracting 1 and dividing by 4.11:
![\begin{gathered} 4.11\cdot e^(-0.026x)=1.3967-1=0.3967 \\ e^(-0.026x)=0.0965126 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jgw9dfxzbfkfgyfvadz7t92eio7glvsfkx.png)
Taking logarithms on both sides:
![\begin{gathered} -0.026x=\log0.0965126 \\ Dividing\text{ by -0.026:} \\ x=(\log0.0965126)/(-0.026) \\ x=90 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uvw4xe7etyckozv4xdn15k8a1hpbn28ohn.png)
According to this model, the world population will be 9 billion in 90 years from 1958, that is, in the year 2048