139k views
3 votes
Find AB. Do not use the matrix function in a calculator - do this by hand and show all work.

Find AB. Do not use the matrix function in a calculator - do this by hand and show-example-1
User Malgi
by
8.1k points

1 Answer

6 votes

Solution:

Given that matrices A, B, C as follows:


\begin{gathered} A=\begin{bmatrix}{3} & {4} & {} \\ {-5} & {2} & {} \\ {1} & {0} & {}\end{bmatrix} \\ B=\begin{bmatrix}{-4} & {2} \\ {3} & {7}\end{bmatrix} \\ C=\begin{bmatrix}{6} & {-1} & {} \\ {2} & {0} & {} \\ {-3} & {5} & {}\end{bmatrix} \end{gathered}

To find AB, we multiply the elements of each row of matrix A by the elements of each column matrix B, and sum the products as follows:


\begin{gathered} AB=\begin{bmatrix}{3} & {4} & {} \\ {-5} & {2} & {} \\ {1} & {0} & {}\end{bmatrix}\begin{bmatrix}{-4} & {2} \\ {3} & {7}\end{bmatrix} \\ =\begin{bmatrix}{(3*-4)+(4*3)} & {(3*2)+(4*7)} & {} \\ {(-5*-4)+(2*3)} & {(-5*2)+(2*7)} & {} \\ {(1*-4)+(0*-3)} & {(1*2)+(0*7)} & {}\end{bmatrix} \\ =\begin{bmatrix}{-12+12} & {6+28} & {} \\ {20+6} & {-10+14} & {} \\ {-4+0} & {2+0} & {}\end{bmatrix} \\ =\begin{bmatrix}{0} & {34} & {} \\ {26} & {4} & {} \\ {-4} & {2} & {}\end{bmatrix} \end{gathered}

Hence, the product AB is


\begin{bmatrix}{0} & {34} & {} \\ {26} & {4} & {} \\ {-4} & {2} & {}\end{bmatrix}

User SAHIL SINGH SODHI
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories