156k views
0 votes
Algebraically solve the equation: log5 + log5(2 + 9) = 1.

User Mikasa
by
4.6k points

1 Answer

5 votes

Solution:

Given:


log_5x+log_5(2x+9)=1

Using the law of logarithm,


logM+logN=log(MN)

Hence,


\begin{gathered} log_5x+log_5(2x+9)=1 \\ log_5(x(2x+9))=1 \\ log_5(2x^2+9x)=1 \end{gathered}

Also, applying the logarithm rule;


\begin{gathered} If\text{ }log_ab=x,\text{ then} \\ a^x=b \end{gathered}

Thus;


\begin{gathered} log_5(2x^2+9x)=1 \\ 5^1=2x^2+9x \\ 5=2x^2+9x \\ Collecting\text{ all terms to one side;} \\ 0=2x^2+9x-5 \\ 2x^2+9x-5=0 \end{gathered}

Solving the quadratic equation by factorization;


\begin{gathered} 2x^2+10x-x-5=0 \\ 2x(x+5)-1(x+5)=0 \\ (2x-1)(x+5)=0 \\ 2x-1=0\text{ OR }x+5=0 \\ 2x=1\text{ OR }x=-5 \\ x=(1)/(2) \\ \\ \\ Thus; \\ x=(1)/(2)\text{ OR }x=-5 \end{gathered}
\begin{gathered} log_5((1)/(2))+log_5(2((1)/(2))+9)=1 \\ log_5((1)/(2))+log_5(10)=1 \\ log_5((1)/(2)*10)=1 \\ log_55=1 \\ Hence,\text{ }x=(1)/(2)\text{ is a TRUE solution} \end{gathered}

Also,


\begin{gathered} log_5(-5)+log_5(2(-5)+9)=1 \\ log_5(-5)+log_5(-1)=1 \\ log_5(-5*-1)=1 \\ log_55=1 \\ Hence,\text{ }x=-5\text{ is also a TRUE solution} \end{gathered}

Therefore, the solution to the equation is;


x=(1)/(2),x=-5

User Sshannin
by
4.2k points