Answer:
294.5 square meters.
Step-by-step explanation:
The shaded region comprises of a sector and a triangle.
![\begin{gathered} \text{Area}=\text{Area of sector+Area of Triangle} \\ =((\theta)/(360\degree)*\pi r^2)+((1)/(2)r^2\sin \alpha) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qg8pl8mug6wezu24vz43dapzojhuwmnss1.png)
The central angle of the major sector,θ = 360 - 130 = 230 degrees
Therefore:
![\begin{gathered} A=((230\degree)/(360\degree)*\pi*11.1^2)+((1)/(2)*11.1^2*\sin 130\degree) \\ =247.298+47.192 \\ =294.49 \\ \approx294.5m^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ahuqronw4uvama6mz43hbh9xhwej8rp5r3.png)
The area of the shaded region is 294.5 square meters (to the nearest tenth).