475,590 views
28 votes
28 votes
Ap calculus need help please

Ap calculus need help please-example-1
User Lany
by
3.1k points

1 Answer

23 votes
23 votes

Answer:


\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 11

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation

Calculus

Integrals

  • Definite Integrals

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^1_0 {f(x)} \, dx = 4


\displaystyle \int\limits^1_0 {g(x)} \, dx = -3


\displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx

Step 2: Find

  1. [Integral] Rewrite [Integration Property - Subtraction]:
    \displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = \int\limits^1_0 {2f(x)} \, dx - \int\limits^1_0 {g(x)} \, dx
  2. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 2\int\limits^1_0 {f(x)} \, dx - \int\limits^1_0 {g(x)} \, dx
  3. Substitute in integral values:
    \displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 2(4) - (-3)
  4. Multiply:
    \displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 8 - (-3)
  5. Subtract:
    \displaystyle \int\limits^1_0 {[2f(x) - g(x)]} \, dx = 11

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Rob Knight
by
2.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.