Given:
the radius of the curvature of concave mirror is
![R=-\text{ 20 cm}](https://img.qammunity.org/2023/formulas/physics/college/cg0xpw25tx8t72hh5r5ybc8ra5e09gtyvn.png)
The distance of the object is,
![d_0=-40\text{ cm}](https://img.qammunity.org/2023/formulas/physics/college/es19zxs09q5qh6mfp71g6969v0acqucqe8.png)
Required:
find the distance of the image.
Step-by-step explanation:
we know that, radius of curvature is given by,
![f=(R)/(2)](https://img.qammunity.org/2023/formulas/physics/college/bh85sef98j9r57ijfntjgkesity9ywaku4.png)
Plugging the value of R in the above formula , we get:
![\begin{gathered} f=\frac{-20\text{ cm}}{2} \\ f=-10\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/g0hz30mnaphhzfk8mcq0ef2wkh4dikvhib.png)
now from the mirror formula,
![(1)/(f)=(1)/(d_0)+(1)/(d_i)](https://img.qammunity.org/2023/formulas/physics/high-school/5iaey1oajkbjcc42lm84zmsxbe7tgrw0gs.png)
Plugging all the values in the above formula, we get:
![\frac{1}{-10\text{ cm}}=(1)/(d_i)+\frac{1}{-40\text{ cm}}](https://img.qammunity.org/2023/formulas/physics/college/zcrftk6g8w2mueco9y8zfnhv7qjvjzx047.png)
solve for di, we get:
![\begin{gathered} (1)/(d_i)=\frac{1}{40\text{ cm}}-\frac{1}{10\text{ cm}} \\ d_i=-(40)/(3) \\ d_i=-13.33\text{ cm} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/obgwoy41it6id6250h5qareq9q98vwmrnp.png)
Thus, the distance of the image is 1
![13.33\text{ cm.}](https://img.qammunity.org/2023/formulas/physics/college/gogidgp76xgzrp9vico16lblg1y7w7jtkb.png)
we can see that image distance is negative, so that means the image formed in front of the mirror. The image is real.
now we calculate the magnification.
![\begin{gathered} m=-(d_i)/(d_0) \\ m=-\frac{-13.33\text{ cm}}{-40\text{ cm.}} \\ m=-0.33 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/e4z1epw0hz821xa6t3h97usy65qnogu9i4.png)
we can see that m is negative which means, the image is diminished and the image is inverted.
Final answer: the distance of the image is 13.33 cm. the image is real, diminished, and inverted.