Given the function
![f(x)=6x+x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/5by73a4aczsulnojh0zfh4bd5ub0l5r6kk.png)
And the point (-2, -8). Therefore:
line passing through Q(–3, f(x))
We have that x = -3, so
![f(-3)=6(-3)+(-3)^2=-18+9=-9](https://img.qammunity.org/2023/formulas/mathematics/high-school/u5vbbq23rj5bnl8aj5mzf6q4i2igrqowtg.png)
Then, the slope of line between (-2,-8) and (-3,-9) is:
![\text{slope}=(-9-(-8))/(-3-(-2))=(-9+8)/(-3+2)=(-1)/(-1)=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/5cf2mgc8x33fhmhai5val8on5gfkxxnva1.png)
Answer: slope = 1
line passing through Q(–2.5, f(x))
x = -2.5, therefore
![f(-2.5)=6(-2.5)+(-2.5)^2=-15+6.25=-8.75](https://img.qammunity.org/2023/formulas/mathematics/high-school/59sep114mxu2oh26qk9eoyj5m4b7nd5hea.png)
The slope of line between (-2,-8) and (-2.5, -8.75) is:
![\text{slope}=(-8.75-(-8))/(-2.5-(-2))=(-8.75+8)/(-2.5+2)=(-0.75)/(-0.5)=1.5](https://img.qammunity.org/2023/formulas/mathematics/high-school/giy16pqib9emcbaob0dlpku0gzo7pma8jv.png)
Answer: slope = 1.5
line passing through Q(–1.5, f(x))
x = -1.5, then
![f(-1.5)=6(-1.5)+(-1.5)^2=-9+2.25=-6.75](https://img.qammunity.org/2023/formulas/mathematics/high-school/7wyci6lresyk1gkrjwe3ajjovtgx723wf8.png)
The slope of line between (-2,-8) and (-1.5, -6.75) is:
![\text{slope}=(-6.75-(-8))/(-1.5-(-2))=(-6.75+8)/(-1.5+2)=(1.25)/(0.5)=2.5](https://img.qammunity.org/2023/formulas/mathematics/high-school/ulsbu5wdqglnraz291xvbcy37ikt4fn857.png)
Answer: slope = 2.5
The slope of the tangent line to the graph of f at P(-2, -8)
The slope of the tangent is equal to the 1st derivative:
![f^(\prime)(x)=6+2x](https://img.qammunity.org/2023/formulas/mathematics/high-school/3zvoi2s8w3tmdym1br443yv68lsmsywzln.png)
Then substitute x = -2
![f(-2)=6+2(-2)=6-4=2](https://img.qammunity.org/2023/formulas/mathematics/high-school/1meron2inwe0vou0ttss103hf5q921acc6.png)
Answer: slope = 2