![\cos (A)=\frac{3\sqrt[]{10}}{10}or(0.9486),\text{ tan(B) =3, sin(A)=}\frac{\sqrt[]{10}}{10}\text{ or (0.3162)}](https://img.qammunity.org/2023/formulas/mathematics/college/8b9tbu6htwao57wu6242f2s8ijsh7qqf60.png)
1) Let's find out those trigonometric ratios:
2) In this triangle, based upon their definitions we can write:
![\begin{gathered} \cos (A)=\frac{15}{5\sqrt[]{10}}\cdot\frac{\sqrt[]{10}}{\sqrt[]{10}}=\frac{15\sqrt[]{10}}{50}=\frac{3\sqrt[]{10}}{10} \\ \tan (B)=(15)/(5)=3 \\ \sin (A)=\frac{5}{5\sqrt[]{10}}=\frac{5\sqrt[]{10}\cdot\sqrt[]{10}}{5\sqrt[]{10}\cdot\sqrt[]{10}}=\frac{\sqrt[]{10}}{10} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wjabxfopevv3u951s1kz5pm6a92uhagq6s.png)
• Notice that the hypotenuse is always on the opposite side to the right angle.
,
• The notion of an adjacent, opposite leg depends on the angle you refer to.