First cone: h=5cm
Second cone: h=13cm
They are similar!
Since they are similar, the radius and height are also similar.
Therefore:
![(h_1)/(r_1)=(h_2)/(r_2)](https://img.qammunity.org/2023/formulas/mathematics/college/hgvjd8cqgb7caw41mncfl9rysefyrdkcwq.png)
Replacing:
![\begin{gathered} (5)/(r_1)=(13)/(r_2) \\ r_25=13r_1 \\ r_2=(13)/(5)r_1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ixo859c3r0y4y9et4x09yx8vw15et0vbj1.png)
Now, the volume of a cone is given by:
![\begin{gathered} V_1=(\pi *r_1^2*h_1)/(3) \\ V_2=(\pi(r_2)^2h_2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yf241zj2p6rpghk853oginj380fgat42b0.png)
Dividing v1/v2:
![(V_1)/(V_2)=(\pi(r_(1))^(2)h_(1))/(3)*(3)/(\pi(r_2)^2h_2)](https://img.qammunity.org/2023/formulas/mathematics/college/ybgi9wu5sybkkh8bth57h661b5t33r93b8.png)
Solving:
![(V_1)/(V_2)=(r_1^2*5)/(r_2^2*15)](https://img.qammunity.org/2023/formulas/mathematics/college/1mw9si7aa9kh7hr6qk3b61f6zz1fx1xbez.png)
Substituing r2=(13/5)* r1
![(V_(1))/(V_(2))=(r_1^2*5)/(((13)/(5))^2*r_1^2*15)](https://img.qammunity.org/2023/formulas/mathematics/college/ob355qmqpi7zaxhitoi3la5o9s564hiwzh.png)
Simplifying:
![(V_1)/(V_2)=(5*5^2)/(13^2*15)=(125)/(2535)](https://img.qammunity.org/2023/formulas/mathematics/college/88n70fwb23ojqfhakenxebp65hjrqcf4yf.png)
We can assign V1=20lb since the volume could represent weight if the material of both cones are uniform:
![\begin{gathered} (20)/(V_2)=(125)/(2535) \\ V_2=(20*2535)/(125)=405.6\text{ }lb \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t64wp94wmw8c1arjddtb4cvvhjnwrjxso2.png)
The asnwer is: The cone B weigh: 405.6 lb.