When a ball is launched with some angle from a point then the components of velocity of ball can be expressed as,
![\begin{gathered} u_x=u\cos \theta \\ u_y=u\sin \theta \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xfs6k2ep7zu7ieo5swek2m5qwwydpc1zq3.png)
The displacement of the ball along x-axis and y-axis can be given as,
![\begin{gathered} x=v_xt \\ y=v_yt-(1)/(2)gt^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6bwah349792w1fl4r1euctqq85tlhstr0s.png)
Plug in the known values,
![\begin{gathered} x=(u\cos \theta)t \\ y=(u\sin \theta)t-(1)/(2)gt^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/d87vl4kljzncs94sjdnbfzby6qtsz2eilc.png)
The final velocity of the ball along y-axis is,
![v_y=u_y-gt](https://img.qammunity.org/2023/formulas/physics/college/dv8trj5d4r431bdzka8u5bqdz3adyt63sx.png)
At the maximum height the final velocity is zero. Substitute the known values,
![\begin{gathered} 0=u\sin \theta-gt \\ t=(u\sin \theta)/(g) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9267927bcb8dq6iyw1zi3f89xbehmjx2n1.png)
This time is for motion of ball upto maximum height therefore, the total time is given as,
![T=(2u\sin \theta)/(g)](https://img.qammunity.org/2023/formulas/physics/college/c43ehbep6yrmzm2jy5fjg4dzb11o5f75lq.png)
The horizontal range of the ball can be given as,
![R=xT](https://img.qammunity.org/2023/formulas/physics/college/klcebck012ys2pd80jk003ao01pbyjkx4s.png)
Substitute the known values,
![\begin{gathered} R=(u\cos \theta)((2u\sin \theta)/(g)) \\ =(u^2\sin 2\theta)/(g) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qcsohlclb4p8ktdoume12na5i8a5qgtwg9.png)
When the ball is launched diagonally then the angle is 45 degree which makes the range of ball as,
![R=(u^2)/(g)](https://img.qammunity.org/2023/formulas/physics/college/qn7k2cf9tz6gsej1uscsx6gnwghpiazv56.png)
because, sin90=1.
Plug in the known values,
![\begin{gathered} 1.02\text{ m=}(u^2)/(9.8m/s^2) \\ u^2=(1.02m)(9.8m/s^2) \\ u=\sqrt[]{9.996m^2s^(-2)} \\ \approx3.16\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qunms7pbgx0uiatz4sj28c0ao5gh5o1zbm.png)
Therefore, the initial velocity of the ball is 3.16 m/s.
The time taken by ball to reach the highest point is,
![t=\sqrt[]{(2h)/(g)}](https://img.qammunity.org/2023/formulas/physics/college/bf4ls0n97d0h2dgi9qjnvaysom2eznam6b.png)
Plug in the known values,
![\begin{gathered} t=\sqrt[]{\frac{2(1\text{ m)}}{9.8m/s^2}} \\ \approx0.452\text{ s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/doyd5yo8k6g3q5o3x9p0hu045un7i5ajqr.png)
Thus, the time taken by ball to reach at highest point is 0.452 s.
The final velocity of ball is given as,
![v=u-gt](https://img.qammunity.org/2023/formulas/physics/college/mh8vwn9lylxj98czdyi87gmbqnngymlcze.png)
Plug in the known values,
![\begin{gathered} v=3.16m/s-(9.8m/s^2)(0.452\text{ s)} \\ =3.16\text{ m/s-}4.43\text{ m/s} \\ =-1.27\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dwupr3aedy09keioa99qk4iejx2arvqdkd.png)
Thus, the final speed of the ball is -1.27 m/s in which negative sign indicates that the ball is deaccelerating.