For this problem we have a certain function,
![MP(x)=xe^(-0.6x)](https://img.qammunity.org/2023/formulas/mathematics/college/jy7m7bjlct09r0196z4iy8jlb80xe49fcz.png)
And we need to integrate it over the interal:
![0\le x\le100](https://img.qammunity.org/2023/formulas/mathematics/college/81k5rtsa40j4ndjc3xclmagi1zcikic1ix.png)
In order to solve this problem, we need to apply the integration by parts method. Such as:
![\int udv=uv-\int vdu](https://img.qammunity.org/2023/formulas/mathematics/college/88hz54x1ybyzfu08fxvjffne3lhq33xl5l.png)
For our case we will call "u = x", therfore we have:
![\begin{gathered} u=x \\ (du)/(dx)=1 \\ du=dx \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ncjhv0s3qbzt9i6e0gsamp5ghzvc8rq8rg.png)
And the other part of the integral will be dv, we have:
![\begin{gathered} e^(-0.6x)dx=dv \\ \int e^(-0.6x)dx=\int dv \\ -1.67e^(-0.6x)=v \\ e^(-0.6x)=-(v)/(1.67) \\ e^(-0.6x)=-0.6v \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hc9suyqf0qbm458gh2lg4n1xy5pn6un3v7.png)
Using the second expression, we have:
![\begin{gathered} \int xe^(-0.6x)=-1.67xe^(-0.6x)+\int 1.67e^(-0.6x)dx \\ \int xe^(-0.6x)=-1.67xe^(-0.6x)-2.78e^(-0.6x)+K \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ff3xl439erc4j9qad8q2izcth137o0s681.png)
Now we need to apply the interval, to define the function:
![\begin{gathered} \int ^(100)_0xe^(-0.6x)=(-1.67xe^(-0.6x)-2.78e^(-0.6x))\begin{cases}100 \\ 0\end{cases} \\ \int ^(100)_0xe^(-0.6x)=(-1.67\cdot100\cdot e^(-0.6\cdot100)-2.78e^(-0.6\cdot100))-(-1.67\cdot0\cdot e^(-0.6\cdot0)-2.78e^(-0.6\cdot0)) \\ \int ^(100)_0xe^(-0.6x)=-167e^(-60)-2.78e^(-60)+2.78e^0 \\ \int ^(100)_0xe^(-0.6x)=2.78 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gdyv439pm9lp592ksycct2c6psmcr4gb3z.png)
The value for the integral on the interval from 0 to 100 is 2.78.