Infinitely many solutions
Step-by-step explanation
![\begin{gathered} -3x-5y+36z=40\Rightarrow equation(1) \\ -x+7z=5\Rightarrow equation(2) \\ x+y-10z=-10\Rightarrow equation(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8xiwjcqjdz9fpvmju97xkrbfblijl2euo8.png)
Step 1
in order to get a new equation with only x and z
a) multiply equation (3) by 5 and add the new equation to equation (1)
![\begin{gathered} x+y-10z=-10\Rightarrow equation(3) \\ \text{Multiplied by 5} \\ 5x+5y-50z=-50 \\ \text{add equation (1)} \\ 5x+5y-50z=-50 \\ -3x-5y+36z=40\Rightarrow equation(1) \\ _(------------------) \\ 2x-14z=-10\Rightarrow equation(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l4ug8s2cvnv86f3kpekmrmkkp9l5u2lhfq.png)
b) now use equations ( 2) and (4) to find x and z
![\begin{gathered} 2x-14z=-10\Rightarrow equation(4) \\ -x+7z=5\Rightarrow equation(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u52nox8vqvk1eee7zmiuaf1jml6j73hhia.png)
isolate x in both sides, then set equal
![\begin{gathered} 2x-14z=-10\Rightarrow equation(4) \\ 2x=-10+14z \\ x=(-10+14z)/(2) \\ -x+7z=5\Rightarrow equation(2) \\ 7z-5=x \\ x=7z-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ttiay4wky0ifngkyg9xvrpx4gj1kijxxcc.png)
x= x, so
![\begin{gathered} x=x \\ (-10+14z)/(2)=7x-5 \\ solve\text{ for z} \\ -10+14z=2(7z-10) \\ -10+14z=14z-10 \\ -10+10=14z-14z \\ 0=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qqodrf21im63bxoayd77irj28smtg2fojd.png)
when we end with 0=0 , then it means that the left-hand side and the right-hand side of the equation are equal to each other regardless of the values of the variables involved; therefore, its solution set is all real numbers for each variable
therefore, the answer is
Infinitely many solutions
I hope this helps you