153k views
1 vote
Find the six trig function values of the angle 240*Show all work, do not use calculator

1 Answer

3 votes

Solution:

Given:


240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.


sin240^0=sin(180+60)

Using the trigonometric identity;


sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,


\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=(1)/(2) \\ cos180=-1 \\ sin60=(√(3))/(2) \\ \\ Thus, \\ sin180cos60+cos180sin60=0((1)/(2))+(-1)((√(3))/(2)) \\ sin180cos60+cos180sin60=0-(√(3))/(2) \\ sin180cos60+cos180sin60=-(√(3))/(2) \\ \\ Hence, \\ sin240^0=-(√(3))/(2) \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.


cos240^0=cos(180+60)

Using the trigonometric identity;


cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,


\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=(1)/(2) \\ cos180=-1 \\ sin60=(√(3))/(2) \\ \\ Thus, \\ cos180cos60-sin180sin60=-1((1)/(2))-0((√(3))/(2)) \\ cos180cos60-sin180sin60=-(1)/(2)-0 \\ cos180cos60-sin180sin60=-(1)/(2) \\ \\ Hence, \\ cos240^0=-(1)/(2) \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.


tan240^0=tan(180+60)

Using the trigonometric identity;


tan(180+x)=tan\text{ }x

Hence,


\begin{gathered} tan(180+60)=tan60 \\ tan60=√(3) \\ \\ Hence, \\ tan240^0=√(3) \end{gathered}

To get cosec 240 degrees:


\begin{gathered} cosec\text{ }x=(1)/(sinx) \\ csc240=(1)/(sin240) \\ sin240=-(√(3))/(2) \\ \\ Hence, \\ csc240=(1)/((-√(3))/(2)) \\ csc240=-(2)/(√(3)) \\ \\ Rationalizing\text{ the denominator;} \\ csc240=-(2)/(√(3))*(√(3))/(√(3)) \\ \\ Thus, \\ csc240^0=-(2√(3))/(3) \end{gathered}

To get sec 240 degrees:


\begin{gathered} sec\text{ }x=(1)/(cosx) \\ sec240=(1)/(cos240) \\ cos240=-(1)/(2) \\ \\ Hence, \\ sec240=(1)/((-1)/(2)) \\ sec240=-2 \\ \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:


\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=(1)/(tan240) \\ tan240=√(3) \\ \\ Hence, \\ cot240=(1)/(√(3)) \\ \\ Rationalizing\text{ the denominator;} \\ cot240=(1)/(√(3))*(√(3))/(√(3)) \\ \\ Thus, \\ cot240^0=(√(3))/(3) \end{gathered}

Find the six trig function values of the angle 240*Show all work, do not use calculator-example-1
User Aliza
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories