Solution:
Given:
![240^0](https://img.qammunity.org/2023/formulas/mathematics/college/3jpix685f64f7fmv74wlai56befkiyhe31.png)
To get sin 240 degrees:
240 degrees falls in the third quadrant.
In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.
![sin240^0=sin(180+60)](https://img.qammunity.org/2023/formulas/mathematics/college/ktwk2xmp8mvapuyti7y8xl7erg40b3zyce.png)
Using the trigonometric identity;
![sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny](https://img.qammunity.org/2023/formulas/mathematics/college/wp12mw93ps5n10js0aqv7arjievy7dq73e.png)
Hence,
![\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=(1)/(2) \\ cos180=-1 \\ sin60=(√(3))/(2) \\ \\ Thus, \\ sin180cos60+cos180sin60=0((1)/(2))+(-1)((√(3))/(2)) \\ sin180cos60+cos180sin60=0-(√(3))/(2) \\ sin180cos60+cos180sin60=-(√(3))/(2) \\ \\ Hence, \\ sin240^0=-(√(3))/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7a7nowcnhus7stub44xks8qk4rsa5f2e6n.png)
To get cos 240 degrees:
240 degrees falls in the third quadrant.
In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.
![cos240^0=cos(180+60)](https://img.qammunity.org/2023/formulas/mathematics/college/ajcbl2enmhs3wp2peegxubqvs2n32btgcr.png)
Using the trigonometric identity;
![cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny](https://img.qammunity.org/2023/formulas/mathematics/college/6i9fd7n0oz9szeujm6xnki1x3iynoa19cn.png)
Hence,
![\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=(1)/(2) \\ cos180=-1 \\ sin60=(√(3))/(2) \\ \\ Thus, \\ cos180cos60-sin180sin60=-1((1)/(2))-0((√(3))/(2)) \\ cos180cos60-sin180sin60=-(1)/(2)-0 \\ cos180cos60-sin180sin60=-(1)/(2) \\ \\ Hence, \\ cos240^0=-(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8tw8upff8sw4xgab8xbm1jxm6umxce8zig.png)
To get tan 240 degrees:
240 degrees falls in the third quadrant.
In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.
![tan240^0=tan(180+60)](https://img.qammunity.org/2023/formulas/mathematics/college/fby6lurr41i8oxxwnwbietm6yipfcr74dw.png)
Using the trigonometric identity;
![tan(180+x)=tan\text{ }x](https://img.qammunity.org/2023/formulas/mathematics/college/n5i5fqfmxh7ghq7u8nf4wrieq4k8dt22e9.png)
Hence,
![\begin{gathered} tan(180+60)=tan60 \\ tan60=√(3) \\ \\ Hence, \\ tan240^0=√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7rbj6prnhf0zhorxmu7ri7hssma3rmf9dn.png)
To get cosec 240 degrees:
![\begin{gathered} cosec\text{ }x=(1)/(sinx) \\ csc240=(1)/(sin240) \\ sin240=-(√(3))/(2) \\ \\ Hence, \\ csc240=(1)/((-√(3))/(2)) \\ csc240=-(2)/(√(3)) \\ \\ Rationalizing\text{ the denominator;} \\ csc240=-(2)/(√(3))*(√(3))/(√(3)) \\ \\ Thus, \\ csc240^0=-(2√(3))/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3118wpcdtj4gxea275os0m900ssbu2gczr.png)
To get sec 240 degrees:
![\begin{gathered} sec\text{ }x=(1)/(cosx) \\ sec240=(1)/(cos240) \\ cos240=-(1)/(2) \\ \\ Hence, \\ sec240=(1)/((-1)/(2)) \\ sec240=-2 \\ \\ Thus, \\ sec240^0=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7gm0vtpqhxicg85o7cqaagn7bhmpjrvcbz.png)
To get cot 240 degrees:
![\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=(1)/(tan240) \\ tan240=√(3) \\ \\ Hence, \\ cot240=(1)/(√(3)) \\ \\ Rationalizing\text{ the denominator;} \\ cot240=(1)/(√(3))*(√(3))/(√(3)) \\ \\ Thus, \\ cot240^0=(√(3))/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/im0dma5m33uby8lbw4iiwyjciehg79glho.png)