Given data:
The length of the rectangle is l=(3x+5) .
The width of the rectangle is b= (2x-2).
The expression for the perimeter is,
![P=2(l+b)](https://img.qammunity.org/2023/formulas/mathematics/college/3vp9k66y1nnq1jtbu9y879k5cvqr4ifbfc.png)
Substitute the given values in the above expression.
![\begin{gathered} P=2(3x+5+2x-2) \\ =2(5x+3) \\ =10x+6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p0b5f541dscmz74talbsb5i21gd9r7usvs.png)
The expression for the area is,
![A=l* b](https://img.qammunity.org/2023/formulas/mathematics/college/doah6yfbvx9idpuhs69p8mjpgmoyq59fn1.png)
Substitute the given values in the above expression.
![\begin{gathered} A=(3x+5)(2x-2) \\ =6x^2-6x+10x-10 \\ =6x^2+4x-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s879tnvhlqb8d8d8zo1e6hst9jekkzqqci.png)
Thus, the perimeter is 10x+6, and the area is 6x^(2) +4x-10.