Use long division to find the quotient:
![(x^3-x-23)/(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/fo5tpd8ghntkmbfk6tsndezo8elo53pm7k.png)
The procedure of the long division is shown:
As we can see, the quotient is x²-x, with a remainder of -23 when the divisor is x+1.
Therefore, we can rewrite the rational expression as:
![(x^3-x-23)/(x+1)=x^2-x-(23)/(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/n38z6i3z9qa6mk6ptja5kptb7ejotugn3h.png)
Where:
![\begin{gathered} q(x)=x^2-x \\ b(x)=x+1 \\ r(x)=-23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zp55gebuifay7dja416t6zhs9fnu3ywoil.png)
Therefore, the answer is:
![x^2-x-(23)/(x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/vb6dwwvukwd8zrdtworxktpha7vk40xlgu.png)