41.0k views
0 votes
You need a 35% alcohol solution. On hand, you have a 440 mL of a 15% alcohol mixture. You also have 90%alcohol mixture. How much of the 90% mixture will you need to add to obtain the desired solution?You will needmL of the 90% solutionto obtainmL of the desired 35% solution.

User Zhutoulala
by
7.3k points

1 Answer

3 votes

We need a 35% alcohol solution.

We have:

15% alcohol: 440 mL

90% alcohol: To be determinate (x)

If we add x mL of 90% alcohol, we will have: (440 + x) mL of solution. 35% of that is alcohol. But of those 440 mL and x mL, 15% and 90% is alcohol, respectively, so the amount of alcohol in the final solution is:

(15% of 440) + (90% of x) = (35% of (400 + x))

440*15/100 + 90*x/100 = 35*(440 + x)/100

We cancel the common denominator:

440*15 + 90*x = 35*(440 + x)

6600 + 90x = 15400 + 35x

Solving for x:

90x - 35x = 15400 - 6600

55x = 8800

x = 160

We need to add 160 mL of 90% alcohol. The desired 35% solution has (440 + 160) mL = 600 mL

User Celi
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories