The function can be described as:
It is the line v(t)=6 from 0 to 3.
From t=3 to t=4, it is a line that passes through (3,6) and (4,0)
![\begin{gathered} (y-3)/(x-6)=(0-6)/(4-3) \\ y-3=-6x+36 \\ y=-6x+39 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e9g1s5cb5dpkjxzvlwumwx63aj2cbjxbuf.png)
So v(t)=-6t+39 from 3 to 4
From 4 to 6 it passes through (0,4) and (6,-2)
![\begin{gathered} (y-4)/(x-0)=(-2-4)/(6-0) \\ y-4=-x \\ y=-x+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wedldkqcg3ekd2bcf9vjofrln8w11f5tdd.png)
v(t)=-t+4 from 4 to 6
From 6 to 7 the line passes through (6,-2) and (7,0) so the equation will be:
![\begin{gathered} (y-(-2))/(x-6)=(0-(-2))/(7-6) \\ y+2=2x-12 \\ y=2x-14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sk9degngt0lerwx3nzxwqdlchd13jniags.png)
So v(t)=2t-14 from 6 to 7.
So the displacement from 0 to 7 is given by:
![\int ^7_0v(t)\text{ dt=\lbrack}\int ^3_06\text{ +}\int ^4_3(-6t+39)+\int ^6_4(-t+4)\text{ }+\int ^7_6(2t-14)_{}\rbrack\text{ dt}](https://img.qammunity.org/2023/formulas/mathematics/college/z3cjsyy3zbxbhe8v05uvhmk79m8mbwc8t5.png)
Integrate to get:
![6\lbrack3-0\rbrack-(6)/(2)\lbrack16-9\rbrack+39\lbrack4-3\rbrack-(1)/(2)\lbrack36-16\rbrack+4\lbrack6-4\rbrack+(2)/(2)\lbrack49-36\rbrack-14\lbrack7-6\rbrack=43](https://img.qammunity.org/2023/formulas/mathematics/college/5c3k8manotex514s44onwpi18x296zr2rm.png)
So the displacement is 43 units.