Given the following expression:
![\frac{(16 \sqrt[]{x})^2 }{y^(-1)}](https://img.qammunity.org/2023/formulas/mathematics/college/illvd4xf840hxp41qwd2ctajk7zlmsz59q.png)
You need to remember the Rules of Exponents shown below:
- Negative Exponent Rule:
![b^(-n)=(1)/(b^n)](https://img.qammunity.org/2023/formulas/mathematics/college/913nnj6nmxetcu0ok69mpsvh374oqcfni8.png)
Where "b" is the base and "n" is the exponent.
- Fractional Exponent Rule:
![b^{(m)/(n)}=\sqrt[n]{b^m}](https://img.qammunity.org/2023/formulas/mathematics/college/48tckl409vuuy53uvo4fj36tgnk5bczh38.png)
- Power of a Product Rule:
![(ab)^m=a^mb^m](https://img.qammunity.org/2023/formulas/mathematics/college/nv6xqizbf45to21vwtosacgd57snij5rpa.png)
In this case, knowing the rules shown above, you can simplify the expression as follows:
1. Apply the Power of a Product Rule in the numerator:
![=\frac{(16)^2(\sqrt[]{x})^2}{y^(-1)}=\frac{256^{}(\sqrt[]{x})^2}{y^(-1)}](https://img.qammunity.org/2023/formulas/mathematics/college/otslf9nlz2rovk70na6zmqso65ungymc5f.png)
2. Apply the Fractional Exponent Rule to simplify the square root:
![=\frac{256^{}(x^{(2)/(2)})^{}}{y^(-1)}=\frac{256^{}(x^1)^{}}{y^(-1)}=\frac{256^{}x^{}}{y^(-1)}](https://img.qammunity.org/2023/formulas/mathematics/college/by8cj4twrocmv6885n1b0si2col6s6g1nv.png)
3. Finally, apply the Negative Exponent Rule:
![=(256^{}x)(y^1)=256^{}xy](https://img.qammunity.org/2023/formulas/mathematics/college/4xwax0q1qehpbx0pbw46fi996o4mpvjbgd.png)
Therefore, the answers are:
- Expression simplified:
![256^{}xy](https://img.qammunity.org/2023/formulas/mathematics/college/1sh8gqhuusaq9jy9d54bzg0ku2xp6l70a9.png)
- Rules of Exponents used to simplify it:
1. Power of a Product Rule:
![(ab)^m=a^mb^m](https://img.qammunity.org/2023/formulas/mathematics/college/nv6xqizbf45to21vwtosacgd57snij5rpa.png)
2. Fractional Exponent Rule:
![b^{(m)/(n)}=\sqrt[n]{b^m}](https://img.qammunity.org/2023/formulas/mathematics/college/48tckl409vuuy53uvo4fj36tgnk5bczh38.png)
3. Negative Exponent Rule:
![b^(-n)=(1)/(b^n)](https://img.qammunity.org/2023/formulas/mathematics/college/913nnj6nmxetcu0ok69mpsvh374oqcfni8.png)