97,108 views
0 votes
0 votes
-Exponential and Logarithmic Functions- If h(x)=x²+ 1, state a rule for...

-Exponential and Logarithmic Functions- If h(x)=x²+ 1, state a rule for...-example-1
User Rob Gilliam
by
3.4k points

1 Answer

5 votes
5 votes

To get h^-1(x), we have to replace x for h(x) and vice versa in the original function:


h(x)=x^2+1
x=(h^(-1)(x))^2+1

Solving for h^-1(x):


√(x-1)=\sqrt{(h^(-1)(x))^2}
h^(-1)(x)=\pm\sqrt[]{x-1}

Graph:

The red function in the graph represents:


h(x)=x^2+1

The blue function represents:


h^(-1)(x)=+\sqrt[]{x-1}

The green function represents:


h^(-1)(x)=-\sqrt[]{x-1}

The graph of f(x)

-Exponential and Logarithmic Functions- If h(x)=x²+ 1, state a rule for...-example-1
User MBria
by
3.2k points