Answer
The variation constant is 108
The equation of variation is y = 108/x
Step-by-step explanation
y varies inversely to x implies:
![y\propto(1)/(x)](https://img.qammunity.org/2023/formulas/mathematics/college/1i0cwizkfojt1s319x2chvjsjjyo5oatke.png)
So, introducing a constant, we have
![\begin{gathered} y=k.(1)/(x) \\ y=(k)/(x)----a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6rhcncc43rjqwbmtwlj04q0mwprug255qe.png)
Substitute y = 12 and x = 9 into (a)
![\begin{gathered} 12=(k)/(9) \\ k=12*9 \\ k=108 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hhil5xd02zphsov7fn08o4tqz6fip6xbtj.png)
Therefore the variation constant = 108
To find the equation of variation, substitute k = 108 into (a)
![\begin{gathered} \text{Recall (a)} \\ y=(k)/(x) \\ \therefore\text{ The equation of variation is }y=(108)/(x) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y716vts212z3ots78tru50dx6dupqxdr8l.png)