ANSWER:
0.536 mm/s²
Explanation:
Given:
Solar intensity (I) = 1380 W/m²
Area (A) = 43,318.28 m²
Mass (m) = 743.39 kg
Speed of light (v) = 3*10^8 m/s
We can calculate the pressure using the following formula:
![\begin{gathered} P=(2I)/(v) \\ \\ \text{ We replacing} \\ \\ P=(2(1380))/((3\cdot10^8)) \\ \\ P=\:0.0000092\text{ Pa} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/z4qmqft7622p8nhq1hlf0nstn0cq67dgrn.png)
We can determine the acceleration knowing the following:
![\begin{gathered} P=(F)/(A) \\ \\ F=ma \\ \\ \text{ We replacing:} \\ \\ P=(ma)/(A) \\ \\ a=(P\cdot A)/(m) \\ \\ \text{ We substitute each value to determine the acceleration:} \\ \\ a=(0.0000092\cdot43318.28)/(743.39) \\ \\ a=0.000536\text{ m/s}^2\cdot\frac{1000\text{ mm}}{1\text{ m}} \\ \\ a=0.536\text{ mm/s}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/k6up9cezganpvnzu0b5hcuq3luffzqbycb.png)
The acceleration is equal to 0.536 mm/s²