The quadratic equation:
![y=x^2+6x-7](https://img.qammunity.org/2023/formulas/mathematics/college/23069awm00xotxmha0crohw2n6mfv61gc3.png)
has the form:
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
with a = 1, b = 6, and c = -7.
We can find the x-intercepts with the help of the quadratic formula, as follows:
![\begin{gathered} x_(1,2)=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x_(1,2)=\frac{-6\pm\sqrt[]{6^2-4\cdot1\cdot(-7)}}{2\cdot1} \\ x_(1,2)=\frac{-6\pm\sqrt[]{64}}{2} \\ x_1=(-6+8)/(2)=1 \\ x_2=(-6-8)/(2)=-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r1bvzeo26t229cnrm57ecobli6x6dck5qo.png)
x-intercepts: 1, -7
The x-coordinate of the vertex can be found as follows:
![\begin{gathered} x_v=-(b)/(2a) \\ x_v=-(6)/(2\cdot1) \\ x_v=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qxltsgm6tvci64eyi7g7ni6ayxernratm4.png)
The y-coordinate is found replacing the x-coordinate (Xv) into the equation of the parabola.
![\begin{gathered} y_v=x^2_v+6x_v-7 \\ y_v=(-3)^2+6\cdot(-3)_{}-7 \\ y_v=9-18-7 \\ y_v=-16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pgakt0447atmsqrgkn79szmwwpo0g87n7d.png)
Vertex: (-3, -16)