12.5k views
0 votes
Using a graphing calculator find the value of tα/2 for a 90% confidence interval when the sample size is 6.

User Ben Foster
by
5.8k points

1 Answer

2 votes

We will calculate the alpha level


\begin{gathered} \alpha=1-confidence\text{ interval} \\ \end{gathered}

The confidence interval given is


C\mathrm{}I=90\text{ \%=0.90}

Therefore, the alpha value will be


\begin{gathered} \alpha=1-0.90 \\ \alpha=0.10 \end{gathered}

Therefore,aplha/2 will be


\begin{gathered} (\alpha)/(2)=(0.10)/(2) \\ (\alpha)/(2)=0.05 \end{gathered}

Let's calculate the degree of freedom(df)


\begin{gathered} df=n-2 \\ \text{where n=sample size=6} \\ df=6-2 \\ df=4 \end{gathered}

Using the graphing calculator, t(alpha/2) will =2.131802

User David Bau
by
4.8k points