We can isolate the variable x from the last equation by subtracting -6y and adding 8z to both sides, that is,
![x=12-6y+8z\ldots(A)](https://img.qammunity.org/2023/formulas/mathematics/college/fncescrjqcw2m1ouh982c8twyhizdzxqza.png)
Now, we can substitute this result into the first and second equations. It leads,
![\begin{gathered} 5(12-6y+8z)-2y+3z=6 \\ 2(12-6y+8z)-4y-3z=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8xz425ekt61g658wpb3s6lkaren66ph8w1.png)
By distributing the numbers into the parentheses, we have
![\begin{gathered} 60-30y+40z-2y+3z=6 \\ 24-12y+16z-4y-3z=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5u2sle3fl2cwb7my7njsdfv8nbfikr2jka.png)
By collecting similar terms, we have
![\begin{gathered} 60-32y+43z=6 \\ 24-16y+13z=14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3msuhf9hzynla6jietwr31l10vr58i8n7o.png)
Now, by moving the number 60 to the right hand side of first equation and the number 24 to the right hand side of the second equaton, we have
![\begin{gathered} -32y+43z=-54 \\ -16y+13z=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/150f1kthzex8qlpw4fy8xr8yk6p3ooqupt.png)
Now, let's isolate the variable y from the second equation. It yields,
![\begin{gathered} -16y=-10-13z \\ \text{then} \\ y=(-10)/(-16)+(-13z)/(-16) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vb85n22mjm2m16cufo04u0gjsjfjxyon8k.png)
which gives
![y=0.625+0.8125z\ldots(B)](https://img.qammunity.org/2023/formulas/mathematics/college/axgli3z2euejkpr2glxotpfci3dncrcezt.png)
Now, we can substutite this result into the first equation (-32y+43z=-54), that is,
![-32(0.625+0.8125z)+43z=-54](https://img.qammunity.org/2023/formulas/mathematics/college/6h10x7i1lz1whjiu9j2tg4oiakfetk7mxh.png)
which gives
![-20-26z+43z=-54](https://img.qammunity.org/2023/formulas/mathematics/college/6lvysgv0hnj2qglhevkhfnk697ejx7tpi3.png)
or equivalently,
![\begin{gathered} -20+17z=-54 \\ 17z=-34 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6g9w417g63j1zm9k0dzsjreyaekf5ojm1s.png)
then
![\begin{gathered} z=(-34)/(17) \\ z=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pqqts2uqk6ffpevs7r8n5vxwl75aoubbpp.png)
So, we have obtained the firs result z=-2. In order to find y, we can substitute our last result into equation (B) from above and get
![\begin{gathered} y=0.625+0.8125(-2) \\ y=0.625-1.625 \\ y=-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q5eeiwojzr2miumw5zz05cqd8wc5xid9ra.png)
and by substituting z=-2 and y=-1 into equation (A), we have
![x=12-6(-1)+8(-2)](https://img.qammunity.org/2023/formulas/mathematics/college/nsexxtvub07um3fs1tysuxt7xmizm5xijr.png)
which gives
![\begin{gathered} x=12+6-16 \\ x=12-10 \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zyloacn5p87lt1rfyv4rj7o9jf2s1xj48p.png)
Therefore, the solution of the system is:
![\begin{gathered} x=2 \\ y=-1 \\ z=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5rma3qpizdlf7auvquzfwoary4ckmv9h8u.png)