The formula for the velocity of flow is given by:
![\begin{gathered} v=(r)/(A) \\ \text{where,} \\ r=\text{rate of flow in cps} \\ A=cross\text{ sectional area.} \\ v=\text{ velocity of flow} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8zcyajag025pjf3o7yx7vas5ou4dtaobfz.png)
The cross-sectional area of a pipe is the area of its opening (i.e. the area of a circle). We are told the diameter of the pipe is 2-inches.
Thus, we can calculate the velocity as follows:
![\begin{gathered} r=0.93\text{cfs} \\ we\text{ should convert this into cubic inches for uniformity of units.} \\ 1cubic\text{ foot}\to1728\text{cubic inches} \\ \therefore0.93\text{cubic foot}\to(0.93)/(1)*1728=1607.040\text{ (To the nearest thousandth)} \\ \therefore r=1607.040\text{cubic inches per second} \\ \\ A=\pi((d)/(2))^2=\pi*((2)/(2))^2=\pi\text{ square inches} \\ \\ \therefore v=(1607.040)/(\pi)=511.5367\approx511.537\text{inches per second} \\ \\ \text{But we want the velocity in feet per second. Thus, we say:} \\ 12\text{ inches }\to1\text{foot} \\ \therefore511.537inches\to(511.537)/(12) \\ \\ \therefore v=42.6\text{fps (To the nearest tenth)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/eq5vr22vzuh720dmre25vc92w1lwz78e29.png)
The Answer is 42.6fps