![\begin{gathered} (4*8)+(4* n) \\ 32+4n \\ 4(8+n) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c1ewlngom9xxt3cr153bb4o82t4bnmpacr.png)
![\begin{gathered} n(8+4) \\ n(12)=12n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kqmiqrda0enpb0yq862c1ks5akzv04h781.png)
![\begin{gathered} (8* n)+(8*4) \\ 8n+32 \\ 8(n+4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gcl7ofegwt9qt9oqjkwqszydvm2ya093n0.png)
![n(8+n)](https://img.qammunity.org/2023/formulas/mathematics/college/bi076nuhdurmklbrzb1tn7enhazm058jfx.png)
We just expanded and simplify the expressions in the questions.
We would be simplifying the options as well to get the equivalent options to the question
Box 1 gives
![\begin{gathered} 8n+n \\ =9n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v7etuhtdlhf6d40lqx5tkdsri0eaitubn3.png)
![8(n+4)](https://img.qammunity.org/2023/formulas/mathematics/college/504ig0vtgp431g0r4ic245hrfkizq4sfgm.png)
Box 2 gives 8(n+4)
Box 3 gives
![\begin{gathered} (n*8)+(n)^2 \\ n(8+n) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sv2ku0fhdhvganfvoo09a7lvk6peszgz6r.png)
Box 3 gives n(8+n)
For Box 4
![\begin{gathered} (n*8)+(n*4) \\ 8n+4n=12n \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ievojjatsj13vg215y7tzgpmz0bds825g.png)
Box 4 gives 12n
Compairing the questions with the given expressions in the box, it can be seen that
Hence, n(8+4)=12n is equivalent to box 4 which is (nx8)+(nx4)=12n
Also, (8xn)+(8x4)= 8(n+4) is equivalent to box 2 which is 8(n+4)
n(8+n) is equivalent to Box 3 which is (nx8)+(n)²