76.9k views
4 votes
Find exact value of cos(alpha-beta) given sin alpha equals 3/5 and cos beta equals -12/13

1 Answer

1 vote

Remember that


cos(\alpha-\beta)=cos\alpha *cos\beta+sin\alpha *sin\beta

step 1

Find out the cosine of angle alpha

Remember that


\begin{gathered} sin^2\alpha+cos^2\alpha=1 \\ sin\alpha\text{=}(3)/(5)\text{ ---> given} \end{gathered}

substitute


((3)/(5))^2+cos^2\alpha=1

The angle alpha lies on the II quadrant -----> the value of the cosine is negative


\begin{gathered} cos^2\alpha=1-(9)/(25) \\ cos^2\alpha=(16)/(25) \\ cos^\alpha=-(4)/(5) \end{gathered}

step 2

Find out the sine of the angle beta


\begin{gathered} s\imaginaryI n^2\beta+cos^2\beta=1 \\ cos\beta=-(12)/(13) \end{gathered}

substitute


s\imaginaryI n^2\beta+(-(12)/(13))^2=1

the angle beta lies on the III Quadrant -----> the value of the sine is negative


\begin{gathered} s\imaginaryI n^2\beta=1-(144)/(169) \\ s\mathrm{i}n^2\beta=(25)/(169) \\ s\mathrm{i}n\beta=-(5)/(13) \end{gathered}

step 3

Substitute the given values in the formula of step 1


\begin{gathered} cos(\alpha-\beta)=cos\alpha cos\beta+s\imaginaryI n\alpha s\imaginaryI n\beta \\ cos(\alpha-\beta)=(-(4)/(5))(-(12)/(13))+((3)/(5))(-(5)/(13)) \end{gathered}
\begin{gathered} cos(\alpha-\beta)=(48)/(65)-(15)/(65) \\ \\ cos(\alpha-\beta)=(33)/(65) \end{gathered}

User Kelend
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories