Triangle:
Procedure:
The interior angles of a triangle add up to 180°. As we know two angles, we can get the third as follows:
![m\angle L+m\angle K+m\angle J=180](https://img.qammunity.org/2023/formulas/mathematics/high-school/hzrb0pjaf4p1v613dbmzafwlw9emry669l.png)
Isolating for m∠J
![m\angle J=180-m\angle L-m\angle K](https://img.qammunity.org/2023/formulas/mathematics/high-school/zfjfzspz0p12xe030fmfd46s5n2ftub9lx.png)
Replacing the values given:
![m\angle J=180-41-117](https://img.qammunity.org/2023/formulas/mathematics/high-school/armieg1e2a940yzttg7hy6c8i6e6ik5kjl.png)
![m\angle J=22](https://img.qammunity.org/2023/formulas/mathematics/high-school/bm1rl8m4cwf9cy5d3dwyf6rzuypxmn6b7o.png)
Then using the trigonometric functions, we can get the sides.
![(\sin (41))/(14)=(\sin (117))/(JL)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mdm8tldcytf5ki2q7ytfruy2zcq3yqmk2y.png)
![JL=(\sin(117))/((\sin(41))/(14))](https://img.qammunity.org/2023/formulas/mathematics/high-school/rm2x9u0ev06nfvl8yzyj0xflk9l3cilcqr.png)
![JL\approx19.01](https://img.qammunity.org/2023/formulas/mathematics/high-school/64lmrbrwr2pemw8y4v42g4q9n381dl81e7.png)
![(\sin(41))/(14)=(\sin (22))/(KL)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wq6ms36cr0cg4hdkgjf2eokvgy31wsd4c3.png)
![KL=(\sin (22))/((\sin(41))/(14))](https://img.qammunity.org/2023/formulas/mathematics/high-school/633hzpmqki4tbc0i190qp4jiy3kn4rwbr4.png)
![KL\approx7.99](https://img.qammunity.org/2023/formulas/mathematics/high-school/absqnenvn9xt2twaf8bu881ex6y4a1zvne.png)
Answer:
• m∠J, = 22°
,
• JL = 19.01
,
• KL = 7.99