step 1
Solve the inequality 1
![\begin{gathered} 2x+7\leq-1 \\ 2x\leq-1-7 \\ 2x\leq-8 \\ x\leq-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w9gvojamqzj2e0kyfforfkt2g9selxs2n3.png)
the solution of the inequality 1 is the interval
(-infinite, -4}
step 2
solve the inequality 2
![\begin{gathered} 4x\leq0 \\ x\leq0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xvtyxpbgzlkxwnkbmm9cq487uf6kw0krih.png)
the solution of the inequality 2 is the interval (-infinite, 0}
step 3
Find the solution of the inequality 1 and the inequality 2
![\mleft(-infinite,-4\mright)\text{ }\cap\text{ }\mleft(-infinite,0\mright)=(-infinite,-4)](https://img.qammunity.org/2023/formulas/mathematics/college/on204cd2vzunqggm476d9ajba1le3r66cd.png)
therefore
the solution set is (-infinite, -4}