Remember the product rule for square roots:
![\sqrt[]{a\cdot b}=\sqrt[]{a}\cdot\sqrt[]{b}](https://img.qammunity.org/2023/formulas/mathematics/college/hxyibywca68il82o4c5roud802ancab5oh.png)
Once the radicand has been rewritten as the product of perfect square factors and factors that are not perfect squares, use the product rule and take the square root of the perfect square factors:
![\begin{gathered} \sqrt[]{(16x^4y^8)(3x)}=\sqrt[]{16x^4y^8}\cdot\sqrt[]{3x} \\ =4x^2y^4\cdot\sqrt[]{3x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qqmo2w98oatfsf384pzwaqc4spylm2yq6k.png)
Thus, the simplification process results in the following expression:
![4x^2y^4\cdot\sqrt[]{3x}](https://img.qammunity.org/2023/formulas/mathematics/college/5zvtepk6oobwl5ll429342h5r4bq2te8nm.png)