191k views
0 votes
Determine the inverse of h(x)=x/x-2

1 Answer

3 votes

Given:


h(x)=(x)/(x-2)

To find the inverse of h(x):

Let the equation be,


y=(x)/(x-2)

Swap x and y, we get


x=(y)/(y-2)

On solving we get,


\begin{gathered} (y-2)/(y)=(1)/(x) \\ 1-(2)/(y)=(1)/(x) \\ -(2)/(y)=(1)/(x)-1 \\ -(2)/(y)=(1-x)/(x) \\ (2)/(y)=-((1-x)/(x))_{} \\ (2)/(y)=(x-1)/(x) \\ (2)/(y)=(x-1)/(x) \\ (1)/(y)=(x-1)/(2x) \\ y=(2x)/(x-1) \end{gathered}

Hence, the inverse of the h(x) is,


(2x)/(x-1)

User Alanquillin
by
3.7k points