Answer:
The consecutive numbers are 4 and 5
Step-by-step explanation:
We need to find square root of two whole numbers a and b, such that
![\sqrt[]{a}<√(21)<\sqrt[]{b}](https://img.qammunity.org/2023/formulas/mathematics/college/rki8fgsyy3b4ho7x24c3szt3o8y27ddssv.png)
For
![\sqrt[]{a},\sqrt[]{b}](https://img.qammunity.org/2023/formulas/mathematics/college/hd6xnjworcrhushdddqr2rt1xgv4yg2c2k.png)
to be whole numbers, then a and b must be perfect squares.
The perfect squares that satisfy this condition are:
16 and 25, therefore,
![\begin{gathered} \sqrt[]{16}<\sqrt[]{21}<\sqrt[]{25} \\ \\ 4<\sqrt[]{21}<5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vm9eoz3aeds55uw6dbmqyk3lnowk43cdb7.png)
The numbers are 4 and 5