Solution
- This is a combination question because we are to choose from a list of items in a distinct lineup.
- The formula for combination is:
![\begin{gathered} ^nC_r=(n!)/((n-r)!r!) \\ \\ where, \\ n\text{ is the total amount of items} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9u2j362ctwnudxvio2v0zdz284660xqw7h.png)
- Also, since the choice or distinct arrangement of the cars independent, we can simply multiply the possible combinations.
- That is,
![\begin{gathered} \text{ Convertible:} \\ ^(20)C_7=77520 \\ \\ \text{ SUV:} \\ ^(10)C_5=252 \\ \\ \text{ Vans:} \\ ^8C_3=56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/my9qic1q5xcs92u3h0x7ppskqg9xcp5akz.png)
- Thus, the possible number of distinct line ups is:
![77520*252*56=1,093,962,240\text{ line ups}](https://img.qammunity.org/2023/formulas/mathematics/college/wrpbo3mf6j867c2rcpttslwvahyzekxq1p.png)