Step-by-step explanation
We first can draw the vertex in order to obtain the minimum value:
![\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/8s8tkffnlnvesnnlpqff3w2izqqlz530v3.png)
![\mathrm{The\:parabola\:params\:are:}](https://img.qammunity.org/2023/formulas/mathematics/college/r2k5kfzibtv6kboog1vbu2sqremijunvkt.png)
![a=1,\:b=-7,\:c=10](https://img.qammunity.org/2023/formulas/mathematics/college/hvz0wopyn7nhrgbfnfskf3sutfictdugrr.png)
![x_v=-(b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/kcg8jhoehgrq4behgg4ohzwd4mmzcllet7.png)
![x_v=-(\left(-7\right))/(2\cdot \:1)](https://img.qammunity.org/2023/formulas/mathematics/college/agea722jjt8ay2q6m2womctt5xixiucpz7.png)
Simplify:
![y_v=-(9)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/x4djoe4zcy153sbd6mivbzqrxshbtj4k7j.png)
![\mathrm{Therefore\:the\:parabola\:vertex\:is}](https://img.qammunity.org/2023/formulas/mathematics/college/b46htzwfiitqwfaar8j72go7b38ajbx3t3.png)
![\left((7)/(2),\:-(9)/(4)\right)](https://img.qammunity.org/2023/formulas/mathematics/college/u20iqusnxrddw48kmdr515imrpaxq6428n.png)
Now, we need to compute the intercepts:
Plug y=0 into the equation and solve the resulting equation 0=x^2-7x+10:
The x-intercept are the following:
(2,0) and (5,0)
Identifying the y-intercept:
Plug x=0 into the equation and solve the resulting equation y=10 for y:
![y=0^2-7*0+10](https://img.qammunity.org/2023/formulas/mathematics/college/q2ga9qa6j4cw644ksbsosccpex2ypbje4i.png)
Computing the power and multiplying terms:
![y=10](https://img.qammunity.org/2023/formulas/mathematics/college/3y8y201x1gcn9jd6oxyyf2v346u5nafy25.png)
The y-intercept is at (0,10)
In conclusin, the appropriate option is OPTION B