82.7k views
1 vote
A committee of eight Representatives will be selected from a group of fourteenRepublicans and six Democrats. Find the number of ways of obtaining a committee withexactly three Republicans.

User Komputist
by
8.1k points

1 Answer

4 votes

ANSWER

The number of ways of obtaining a committee with exactly 3 Republicans is 7280 ways

Explanation:

Given information

A committee of 8 representatives will be selected from a group of 14 Republicans and six Democrats.

From the above information

The total number of persons = 14 + 6

The total number of persons = 20

The total number of ways of selecting 8 representatives is 20C8


\begin{gathered} ^(20)_{}C_8 \\ \text{Recall that, } \\ ^nC_r\text{ = }\frac{n!}{(n\text{ - r)!r!}} \\ ^(20)C_8\text{ = }\frac{20!}{(20\text{ -8)!8!}} \\ =\text{ }(20!)/(12!8!) \\ =\text{ }\frac{20\text{ x 19}*18*17*16*15*14*13*\cancel{12*11*10*9*8*7*6*5*4*3*2*1}}{\cancel{12*11*10*9*8*7*6*5*4*3*2*1!\text{ 8!}}} \\ =\text{ }(20*19*18*17*16*15*14*13)/(8*7*6*5*4*3*2*1) \\ =\text{ }(5079110400)/(40320) \\ =\text{ 125,970 ways} \end{gathered}

The favorable way of selecting exactly 3 republicans are 14C3(6C3)


\begin{gathered} ^(14)C_3\text{ = }\frac{14!}{(14-\text{ 3)!3!}} \\ =\text{ }\frac{14!}{11!\text{ 3!}} \\ =\text{ }\frac{14\text{ }*\text{ 13 }*12*}{3*2*1} \\ =\text{ }(2184)/(6) \\ =\text{ 364 ways} \\ \\ ^6C_3\text{ = }\frac{6!}{(6\text{ - 3)!3!}} \\ =\text{ }(6!)/(3!3!) \\ =\text{ }\frac{6\text{ x 5 x 4}}{3\text{ x 2 x 1}} \\ =\text{ }(120)/(6) \\ =\text{ 20 ways} \\ 364\text{ x 20 = 7280 ways} \end{gathered}

Therefore, the number of ways of obtaining a committee with exactly 3 Republicans is 7280 ways

User Fandasson
by
7.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories