EXPLANATION
Given the triangle, we can calculate the value of the other angles by applying the Law of Sines as we already know,
![(\sin 89)/(11.5)=(\sin Q)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/unhkr6pz1clkpffga4avdy1jxiw9jyjzbg.png)
Multiplying both sides by 9:
![9\cdot(\sin89)/(11.5)=\sin Q](https://img.qammunity.org/2023/formulas/mathematics/college/it9s7sfyk7fgcwbpb5m7ga545u1wsv4usv.png)
Switching sides:
![\sin Q=9\cdot(\sin 89)/(11.5)](https://img.qammunity.org/2023/formulas/mathematics/college/t2vuh94c352m2ty1gm70cnkssq6i0f8sje.png)
Simplifying:
![\sin Q=9\cdot0.0869=0.78](https://img.qammunity.org/2023/formulas/mathematics/college/7hsixwv4usyc36r2v0hpk0r728b2z8mdmf.png)
Applying sin-1 to both sides:
![Q=\sin ^(-1)(0.78)](https://img.qammunity.org/2023/formulas/mathematics/college/uxkwsloe2muqm9bfaicmgge89vrhhips9e.png)
Computing the argument:
![Q=51.48^o](https://img.qammunity.org/2023/formulas/mathematics/college/dhic4cr5rob1beh4va70sldafjtd24cliy.png)
Applying the Triangles Sum of Interior Angles Theorem give us the following relationship:
89 + 51.48 + P = 180
Adding like terms:
140.48 + P = 180
Subtracting 140.48 to both sides:
P = 180 - 140.48 = 39.52 degrees
The answers are:
Q=51.5°
P = 39.5° ---> Rounding to the nearest tenth