Given:
a.) Suppose that Juan found a crop circle with a 1350 ft radius.
b.) He follows a 2000 ft arc on the circle.
To find the central angle, we will be using the following formula:
![\text{ S = r}\Theta](https://img.qammunity.org/2023/formulas/mathematics/college/z09ktep6mm9t3jlermcr7zkgul3cfz81p5.png)
Where,
S = Arc Length = 2000 ft.
r = radius = 1350 ft.
Θ = Central angle (in radians)
We get,
![\text{ S = r}\Theta](https://img.qammunity.org/2023/formulas/mathematics/college/z09ktep6mm9t3jlermcr7zkgul3cfz81p5.png)
![\Theta\text{ = }\frac{\text{ S}}{\text{ r}}\text{ = }\frac{\text{ 2000}}{\text{ 1350}}\text{ = }\frac{\text{ 40}}{\text{ 27}}](https://img.qammunity.org/2023/formulas/mathematics/college/k0b2abs1ybkw2dikh30g13s2lc74z6mpey.png)
![\text{ }\Theta\text{ = }(40)/(27)\text{ radians}](https://img.qammunity.org/2023/formulas/mathematics/college/zv69ondkz36lwl3rw2owggf4ft67ud38q5.png)
Therefore, the answer is 40/27 radians.